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Abstract—This paper presents main formulas to convert S, Z,
Y, h, ABCD and T parameters of multiport circuits. Formulas are
presented in matrix form, and some restrictions on unbalanced
systems for cascade parameters are discussed. Those expressions
are prime of importance in order to analyze and optimize
multiport systems without any simulation software.

Index Terms—Multiport, Embedding, De-embedding, S-
parameters, Calibration, Education.

I. INTRODUCTION

Most microwave engineers have already developed some
tools to simplify their tasks in high level language such as
Python, Matlab, Scilab. Regarding passive device embedding
and de-embedding procedures, for example, most of their
work is based on the conversion between S (scattering), Z
(impedance), Y (admittance), h (hybrid), ABCD (chain) and T
(chain transfert) parameters limited to only 2-ports devices as
available in [1]. These days, the need for multi-port conversion
tools is illustrated by the growth of multiple input / output
devices for RF and microwave applications such as dual-
input power amplifier, multiport combiners in Doherty or
Outphasing power amplifiers, multiport nonlinear transistor
models or MIMO systems.

This paper starts from the reference paper regarding circuit-
level matrix conversion written by Dean A. Frickey [1] and the
discuss regarding the use of a complex impedance as reference
for S-parameters [2], and proposes an extension to multiport
analysis. Formulas, presented here, will help engineers to
develop design optimization methods without the need of a
linear S-parameter simulation.
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Fig. 1. Example of partitioning on a balanced (same number of
port on the external and internal reference planes) multiport. The
terminology ”external” and ”internal” comes from embedding /de-
embedding problems where the device of interest is connected to the
internal port.

The multiport approach, initially presented in [3], and well
detailed in [4], consists on considering the S-parameter matrix
of the device of interest as a partition of 4 sub-matrix.
Ports are divided in 2 groups, often named external and
internal ports according to embedding problems. Therefore,
the 2-port analysis is easily extended to multiport purpose.
Figure 1 illustrates a multiport S-matrix example and how the
matrix is partitioned according to the external and internal
ports considerations. This kind of partitioning can be directly
applied to Z, Y, h, ABCD and T matrices as well.

The power-waves in use for S-parameters matrices are
defined in [5] as: ai = 1
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where ai and bi are respectively the incident and reflected
power waves, Vi and Ii the voltage and currents and Zi

the reference impedance (normalization impedance) at port
i. By substituting ai and bi from (1) in multiport circuit
parameters matrices, generalized multiport conversions can be
easily demonstrated. Results are presented in this paper.

II. MULTIPORT PARAMETERS DEFINITION

Electrical parameters matrices, already defined in [1] can
be expanded to multiport according to the partitioned sub-
matrices defined in the introduction such as:(

(Ve)
(Vi)

)
=

[
[Zee] [Zei]
[Zie] [Zii]

]
.

(
(Ie)
(Ii)

)
(2)

(
(Ie)
(Ii)

)
=

[
[Yee] [Yei]
[Yie] [Yii]

]
.

(
(Ve)
(Vi)

)
(3)

(
(Ve)
(Ii)

)
=

[
[hee] [hei]
[hie] [hii]

]
.

(
(Ie)
(Vi)

)
(4)

(
(Ve)
(Ie)

)
=

[
[A] [B]
[C] [D]

]
.

(
(Vi)
(−Ii)

)
(5)

Furthermore, multiport S-parameters may be presented as the
following set of submatrices :(
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Regarding the power-wave chain matrix expression (T-
parameters), we can find several definitions in the litterature.
In this paper, we keep the defintion presented by Frickey [1]
in order to expend his paper to multiport analysis.(
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III. MULTIPORT PARAMETERS CONVERSIONS

By definition, the well known relation between impedance
and admittance remains in multiport analysis as expressed in
(8):

[Y ] = [Z]
−1 (8)

Conversions between electrical parameters are deduced
from algebraic manipulation from equations (2) to (5).
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Substituting Kurokawa’s power-waves (1) in (6) leads us to
[S] to [Z] and [Y ] matrices conversions:

[Z] = [G0]
−1
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−1
.([S].[Z0] + [Z∗0 ]).[G0] (17)

[S] = [G0].([Z]− [Z∗0 ]).([Z] + [Z0])
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.[G0]

−1 (20)

with
[G0] = diag{g1, . . . , gn, . . . , gN} (21)

[Z0] = diag{Z1, . . . , Zn, . . . , ZN} (22)

and [I] is the identity matrix. [G0] and [Z0] are diagonal
matrices (terms outside the diagonal are zero) where each term
is related to a port reference impedance Zn and

gn =
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(23)

Multiport transfert parameter matrix ([T ]), useful to cascade
multiport blocks as detailed in [6], is related to the [S] matrix
as follow:
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Notice that the chain matrices [ABCD] and [T ] are properly
defined only when the system is balanced (same number of
internal and external ports). If the system is unbalanced, we
have to ensure the uniqueness of the solution and then to
apply the pseudo-inverse operator instead of the inverse matrix
function.

IV. MULTIPORT S-PARAMETERS NORMALIZATION

Considering the reference impedance matrix (22) and the
conversions (17) and (18), we can express a change of refer-
ence impedance of a multiport S-parameter [S] from [Z0] to
[Z ′0] as follow :

[S′] = [A]
−1
.([S]− [ρ∗]).([I]− [ρ].[S])

−1
.[A∗] (26)

where
[A] = [G′0]

−1
.[G0].[[I]− [ρ∗]] (27)

[ρ] = [[Z ′0]− [Z0]].[[Z
′
0] + [Z∗0 ]]

−1 (28)

[I] is the identity matrix, [G0], [G′0], [Z0] and [Z ′0] are defined
in (21) and (22) respectively. All matrices, except [S] and [S′],
are diagonals.
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Fig. 2. Illustration of an unbalanced multiport S-parameter terminated
with a multiport load at its internals ports.

V. MULTIPORT EMBEDDING AND SNP REDUCTION

As depicted by figure 2, the embedding procedure consists
on calculating the S-parameters at the external ports according
to the perfectly known S-parameters connected at the internal
ports. The formula already demonstrated in [7], and eventually
in the annex of [8], is:

[SGlobal] = [See] + [Sei].([I]− [SL].[Sii])
−1
.[SL].[Sie] (29)
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Fig. 3. Illustration of de-embedding with multiport T-matrices. The first line represents a balanced system. The second line is an unbalanced
system with a number of external ports higher than internal ones (Ne > Ni). The matrix inversion has to be done with the pseudo-inverse
operator (•+). The third line represents an unbalanced system where Ni > Ne. There is not uniqueness of the solution for the matrix
inversion. SDUT solutions are presented here. More cascading properties of the multiport T-matrix are available in [6]

We can apply the same demonstration to [Z] or [Y ] matrices
to obtain those embedding results:

[ZGlobal] = [Zee]− [Zei].([Zii] + [ZL])
−1
.[Zie] (30)

[YGlobal] = [Yee]− [Yei].([Yii] + [YL])
−1
.[Yie] (31)

We can notice that the embedding procedure is a reduction of
the number of available port on a [S] matrix when we know
the terminations applied to the other ports.

VI. DE-EMBEDDING PROBLEMS

According to figure 2, the de-embedding procedure consists
on extracting the S-parameters at the internal ports (SL =
Sint) when [S] and SGlobal = Sext are known. We can
calculate from equation (29):

Sint =Sei
−1.(Sext − See)

.
(
Sie + Sii.Sei

−1.(Sext − See)
)−1 (32)

Equation (32) works only when [S] describe a balanced
system and is similar to 8-error term model multiport VNA
calibration [9]. If the number of internal ports (Ni) is lower
than the number of external port (Ne), we can use the pseudo-
inverse operator to invert Sei and get the least-square solution.
Otherwise, the solution can not be solved as it is and requires
more assumptions. This perfectly illustrates that S to T matrix
transformation is lossy with unbalanced networks when Ni >
Ne as depicted by figure 3. Figure 3 presents a possible way
to extract SDUT from the T-parameters.

VII. CONCLUSION

This paper presents the equations for converting electrical
parameters matrix representations. Equations are derived from
the definitions provided by Frickey in 1994 for 2-port parame-
ters [1] but are, here, extended to multiport analysis. According
to the formulas presented in this paper, the reader can handle,
convert, normalize or reduce any matrix representing a linear
multiport.
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